Analysis of Natural Bioactive Compounds - N323045
Title: Analýza biologicky aktivních přírodních látek
Guaranteed by: Department of Food Analysis and Nutrition (323)
Faculty: Faculty of Food and Biochemical Technology
Actual: from 2021
Semester: winter
Points: winter s.:5
E-Credits: winter s.:5
Examination process: winter s.:
Hours per week, examination: winter s.:3/0, Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
Is provided by: M323016
Guarantor: Hajšlová Jana prof. Ing. CSc.
Dvořáková Darina doc. Ing. Ph.D.
Is interchangeable with: M323016
Examination dates   Schedule   
Annotation -
Within this course, principles and key applications of modern isolation, separation and detection techniques commonly used in the field of studies / characterization of biologically active compounds. Special attention is paid to (i) application of basic and advanced extraction techniques; (ii) effective separation strategy realized by gas / liquid chromatography; (iii) presentation of various instrumental techniques with a special focus on mass spectrometry and its presentation in case studies. In the final phase of course, practical aspects together with problems to be solved in a qualified manner in practice are summarized.
Last update: Dvořáková Darina (31.01.2018)
Aim of the course -

Students will be able to understand:

  • How to make a qualified choice of suitable sample preparation strategy (i.e. extraction and clean-up technique) for determination of target analytes.
  • Utilization of separation techniques (gas / liquid chromatography) coupled with mass spectrometric detection for analysis of complex mixtures of natural compounds.
  • Basic characteristics of various ionization techniques and mass analysers and their use for identification and quantification of analytes.
  • Application of non-target screening (metabolomic fingerprinting / profiling) followed by statistical processing of experimental data.
Last update: TAJ323 (28.08.2013)
Course completion requirements -

To obtain the credit it is necessary to prepare a short presentation describing a case study in the field of analysis of biologically active substances. Assigned credit is a prerequisite for passing the exam, which consists of a written part.

Last update: Dvořáková Darina (31.01.2018)
Literature -

R: Otles S. (ed.): Handbook of Food Analysis Instruments. CRC Press, Boca Raton, USA, 2009, e-zdroj VŠCHT, ISBN 9781420045666.

R: W.M.A. Niessen: Current Practice of Gas Chromatography-Mass Spectrometry. Marcel Dekker, Inc., USA, 2001, ISBN 9780824704735.

R: W.M.A. Niessen: Liquid Chromatography-Mass Spectrometry. CRC Press, Boca Raton, USA, 2006, ISBN 978-0-8247-4082-5.

R: Watson J. T., Sparkman O. D.: Introduction to Mass Spectrometry. Wiley, Chichester, Velká Británie, 2007, ISBN 978-0-470-51634-8.

Last update: Dvořáková Darina (31.01.2018)
Syllabus -

1. Introduction to the issue, classification of biologically active substances

2. General characteristics of the analytical procedure, performance characteristics and validation, basic steps in the analysis of biologically active substances of both natural and anthropogenic origin

3. Basic and advanced extraction techniques with a focus on their use in practice (case studies)

4. Gas chromatography (theory, injection techniques, classification of capillary columns, influence of various parameters on the separation process)

5. Gas chromatography (optimization of separation, two-dimensional GC, conventional detectors)

6. Liquid chromatography (theory, selection of chromatographic system)

7. Liquid chromatography (columns and classification of stationary phases, conventional detectors, optimization and influence of various parameters on the separation process)

8. Mass spectrometry (introduction and characterization of application potential, ionization techniques)

9. Mass spectrometry (mass analyzers, ion mobility, detection)

10. Quantification procedures and techniques, confirmation, matrix effects in GC and LC and possibilities of their reduction and compensation

11. Basic approaches in the analysis of biologically active substances (essential oils, vitamins, glycosides)

12. Basic approaches in the analysis of biologically active substances (biogenic amines, alkaloids, mycotoxins, environmental contaminants)

13. Non-target analysis (metabolomic fingerprinting and profiling, case studies)

14. Presentation of individual students works, discussion

Last update: Dvořáková Darina (31.01.2018)
Learning resources -

Techniques overview:

http://www.chem-ilp.net/labTechniques/LabTechniques.htm

http://www.chem.arizona.edu/massspec/

http://www.ionsource.com/tutorial/spectut/spec1.htm

http://www.chemguide.co.uk/analysis/masspecmenu.html

Compounds databases, mass spectra:

http://webbook.nist.gov/chemistry/

http://www.chemspider.com/

http://www.massbank.jp/

http://metlin.scripps.edu/

Last update: Dvořáková Darina (31.01.2018)
Registration requirements -

Analytical chemistry

Last update: Dvořáková Darina (31.01.2018)
Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0.5 14
Obhajoba individuálního projektu 0.1 3
Účast na přednáškách 1.5 42
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0.5 14
Práce na individuálním projektu 1.4 39
Příprava na zkoušku a její absolvování 1 28
5 / 5 140 / 140
Coursework assessment
Form Significance
Regular attendance 20
Defense of an individual project 35
Examination test 45