|
|
|
||
Students will be acquainted with the theory of function series and they will deepen knowledge of linear algebra. Moreover, they will learn some basic concepts of the functional and vector analysis.
Last update: Janovská Drahoslava (29.08.2013)
|
|
||
The students will deepen knowledge in the following areas: 1. Theory of series including function series 2. Linear algebra, namely orthogonal projection, least square solution, eigenvalues and eigenvectors, singular decomposition of matrices 3. Basis knowledge of functional analysis 4. Basics of vector analysis: Hamilton operator "nabla" and operators grad, div, rot. Green's formulas. All theoretical concepts will be illustrated by simple examples and exercises Last update: TAJ413 (05.09.2013)
|
|
||
R: J. Lukeš: Zápisky z funkcionální analýzy,Univerzita Karlova v Praze, Nakladatelství Karolinum, 2002,ISBN 80-7184-597-3 R: Turzík a kol.: Matematika II ve strukturovaném studiu, skripta, VŠCHT Praha, 2005, ISBN 80-7080-555-2 R: A. Klíč, M. Dubcová: Základy tenzorového počtu s aplikacemi, VŠCHT Praha, 1998. A: R. A. Horn, C. R. Johnson: Matrix Analysis. Cambridge Universitz Press 1999 (6. vydání). ISBN 0-521-38632-2 Last update: Janovská Drahoslava (29.08.2013)
|
|
||
Lectures, exercises Last update: Janovská Drahoslava (29.08.2013)
|
|
||
1. Convergence of sequences and series of numbers, convergence and absolute convergence, criteria. 2. Convergence of series and sequences of functions, convergence and uniform convergence, criteria. 3. Power series, radius of convergence. Taylor series. 4. Orthogonal matrices, orthogonal transformations. 5. Normal equations, their solutions, and applications. 6. Matrix decompositions LR, QR. 7. Eigenvalues and eigenvectors. 8. Singular values, singular value decomposition. 9. Norm and scalar product in function spaces C^k(Ω), L^2(Ω). Banach and Hilbert spaces. Orthogonal systems. 10. Linear functionals. 11. Linear and nonlinear operators. 12. Eigenvalues and eigenfunctions of linear operators. 13. Basics of vector analysis: Hamilton operator "nabla" and operators grad, div, rot. 14. Gauss theorem. Green's formulas. Last update: Janovská Drahoslava (29.08.2013)
|
|
||
http://www.vscht.cz/mat/Ostatni/MIII1-3k.pdf http://old.vscht.cz/mat/Ostatni/MIII/MIIIprednasky4-7.pdf http://www.vscht.cz/mat/Ostatni/MIII9-12k.pdf http://www.vscht.cz/mat/Ostatni/vect_anal_2012.pdf http://www.vscht.cz/mat/Ostatni/SbirkaIII.pdf Last update: Axmann Šimon (19.01.2017)
|
|
||
Mathematics I, Mathematics II or Matematika I, Matematika II Last update: Janovská Drahoslava (15.02.2018)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 1.5 | 42 | ||
Příprava na zkoušku a její absolvování | 1.5 | 42 | ||
Účast na seminářích | 1 | 28 | ||
5 / 5 | 140 / 140 |
Coursework assessment | |
Form | Significance |
Regular attendance | 40 |
Examination test | 60 |