SubjectsSubjects(version: 947)
Course, academic year 2023/2024
Sensors and Sensor Systems - N444019
Title: Senzory a senzorové systémy
Guaranteed by: Department of Physics and Measurement (444)
Faculty: Faculty of Chemical Engineering
Actual: from 2019
Semester: summer
Points: summer s.:5
E-Credits: summer s.:5
Examination process: summer s.:
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Extent per academic year: 2 [hours]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
For type:  
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Vrňata Martin prof. Dr. Ing.
Is interchangeable with: M444008
Examination dates   Schedule   
Annotation -
Last update: TAJ444 (16.12.2013)
The subject in the introductory part explains and specifies the basic terms in sensor area: sensor, sensor system, static and dynamic sensor parameters, minimizing of influence of interfering input quantities and basic rules for projecting sensor systems. The specific part is focused on piezoelectric, SAW, optical sensors and biosensors (detailed explanation of transducing mechanism, sensor architecture, application, detection limits etc.).
Aim of the course -
Last update: TAJ444 (16.12.2013)

The students will be able

to explain basic principles of detecting both physical and chemical quantities by sensors

to minimize both static and dynamic errors of sensors

to apply basic rules for designing sensor systems

to be skilled in piezoelectric sensors, SAWs, optical sensors and biosensors.

Literature -
Last update: Fialová Jana (26.09.2013)

R: Janata J., Principles of Chemical Sensors, Amamzon, New York, 2009, 0387699309

R: Korotcenkov G., Chemical Sensors Comprehensive Sensor Technologies: Volume 4, Solid State Sensors, Momentum Press, New York, 1606502336

Learning resources -
Last update: TAJ444 (27.08.2013)


Syllabus -
Last update: TAJ444 (27.08.2013)

1. Historical introduction, sensor terminology, classification of sensors for physical and chemical input quantities, transducing mechanisms in sensing

2. Static and dynamic parameters of sensors, general methods for testing sensor parameters

3. Sources of errors in measurement by sensors and methods of their minimizing, method of differential sensor, method of feedback sensor

4. Method of compensating sensor, connection of sensors into Wheatstone bridge, elimination of parasitic input quantities

5. Basic principles of sensor system architecture - measuring chain, topology of sensor network, conditions for connecting individual sensor into the system

6. Sensor arrays (electronic nose, electronic tongue) and their application for improving selectivity of detection process, mathematical processing of sensor signal (Principal Component Analysis, Cluster Analysis)

7. Introduction to physics of semiconductors - the most frequently applied materials of sensitive layers

8. Semiconductor gas sensors - operation principle, equivalent circuit, measuring modes

9. Piezoelectric sensors - operation principle, applications in measuring deformation, force, acceleration, moment of force and vibrations

10. SAW sensors - operation principle, sensor architecture, measurement of mechanical quantities, applications for detection of chemical substances

11. Sensors of residual pressure in vacuum systems (dilatation vacuometer, molecular vacuometer, Pirani gauge, Penning gauge)

12. Optical sensors I - basic facts from optoelectronics, electroluminiscence diodes, semiconductor lasers, optical fibers, wavegiudes, photoresistors, photodiodes

13. Optical sensors II - solar cells, optical grid sensors, photoelasticity, Moire effect

14. Biosensors - basic facts, biocatalytic and bioaffinity sensors, molecular recognition, biosensors for in-vivo and in-vitro detection

Registration requirements -
Last update: TAJ444 (27.08.2013)

Physics I

Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Příprava na zkoušku a její absolvování 3 84
Účast na seminářích 1 28
5 / 5 140 / 140
Coursework assessment
Form Significance
Regular attendance 20
Report from individual projects 20
Oral examination 60