SubjectsSubjects(version: 965)
Course, academic year 2019/2020
  
Physics I - N444001
Title: Fyzika I
Guaranteed by: Department of Physics and Measurement (444)
Faculty: Faculty of Chemical Engineering
Actual: from 2019 to 2020
Semester: both
Points: 7
E-Credits: 7
Examination process:
Hours per week, examination: 3/2, C+Ex [HT]
Capacity: winter:unknown / unknown (unknown)
summer:unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Is provided by: B444003
Additional information: http://ufmt.vscht.cz/cs/elektronicke-pomucky.html
Old code: F1
Note: you can enroll for the course in winter and in summer semester
Guarantor: Hofmann Jaroslav doc. Ing. CSc.
Urbanová Marie prof. RNDr. CSc.
Vrňata Martin prof. Dr. Ing.
Class: Předměty pro matematiku
Incompatibility : N444022, N444024
Interchangeability : N444024, Z444001
Is interchangeable with: N444024, AB444003, B444003, B444001
Examination dates   Schedule   
Annotation -
The course is aimed at understanding the fundamental physical phenomena and the development of technical thinking. The laws of physics and physical principles that are essential for connecting objects in a bachelor study program are discussed and explained.
Last update: TAJ444 (16.12.2013)
Literature -

R: Halliday D., Resnick R., Walker J., Fundamentals of Physics. John Wiley & Sons, Inc. New York, 2005, ISBN 0-471-21643-7

Last update: Fialová Jana (26.09.2013)
Teaching methods - Czech

Přednášky a výpočetní semináře

Last update: Hofmann Jaroslav (07.11.2012)
Requirements to the exam -

Assessment: two written tests during semester; Exam: written and oral

Last update: TAJ444 (28.01.2008)
Syllabus -

1. Introduction: Physical quatities, The International System of Units.

2. Basic concepts of Mechanics I: Force, the Newton's laws, work, power, kinetic and potential energy. Conservation of mechanical energy and linear momentum, elastic and inelastic collisions.

3. Basic concepts of Mechanics II: Moment of inertia, torque, angular momentum. Work, power and energy in rotational motion. Rolling motion of rigid bodies. Static equilibrium conditions, center of gravity.

4. Continuum and fluid mechanics: Forces in continuum, deformation, Hooke's law. Hydrostatic presure, Archimedes' law. Bernoulli's equation, real liquid flow.

5. Oscillations: undamped, damped and forced harmonic oscillations. Composed oscillations.

6. Waves: Description, propagation velocity, intensity. Huygen's principle, refraction and reflection, Snell's law. Interference, standing waves.

7. Wave optics: Concept of light, interference, thin film, sigle-slit diffraction, diffraction grating, polarization, optical activity.

8. Geometric optics: Basic concepts, reflection and refraction, optical instruments: magnifying glass, microscope.

9. Electrostatic field: Coulomb's law. Electric dipole. Potential, voltage, work. Capacitor, dielectric polarization. Charge motion in an electric field.

10. Direct current circuits: Ohm's law, Joule's law. Kirchhoff's rules. Current, voltage and resistance measurements.

11. Magnetic field: Magnetic force. Mass spectrograph, electric measurement instruments, cyclotron, the Hall effect. Biot-Savart law, Ampere's law. Magnetic fields in matter.

12. Electromagnetic field: Electromagnetic induction, proper and mutual inductance. Electromagnetic waves, energy of electromagnetic field.

13. Alternating current circuits: Generator. Power. Impedance, phase shift, serial resonance circuit.

14. Basic concepts of modern physics: Blackbody radiation, Stefan-Boltzmann radiation law, Planck radiation law, absorption, emission, laser. The photoelectric effect, X-rays, X-ray diffraction.

Last update: Hofmann Jaroslav (11.07.2013)
Learning resources -

http://ufmt.vscht.cz/cs/elektronicke-pomucky.html (in czech)

Last update: Hofmann Jaroslav (11.07.2013)
Learning outcomes -

Students will be able to:

Explain the essence of selected physical phenomena in the field of mechanics, oscillations and waves, optics, electricity and magnetism, modern physics

Applied physical laws in the study of related objects

Separately deal with physical tasks which are the basis for related study in Bachelor study program

Last update: TAJ444 (16.12.2013)
Registration requirements -

Mathematics I

Last update: Hofmann Jaroslav (11.07.2013)
Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0.5 14
Účast na přednáškách 1.5 42
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1.5 42
Příprava na zkoušku a její absolvování 2.5 70
Účast na seminářích 1 28
7 / 7 196 / 196
Coursework assessment
Form Significance
Examination test 40
Continuous assessment of study performance and course -credit tests 20
Oral examination 40

 
VŠCHT Praha