SubjectsSubjects(version: 965)
Course, academic year 2022/2023
  
Numerical Methods - AB413004
Title: Numerical Methods
Guaranteed by: Department of Mathematics, Informatics and Cybernetics (446)
Faculty: Faculty of Chemical Engineering
Actual: from 2021 to 2022
Semester: winter
Points: winter s.:5
E-Credits: winter s.:5
Examination process: winter s.:
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited / unlimited (unknown)
Min. number of students: unlimited
State of the course: taught
Language: English
Teaching methods: full-time
Level:  
Additional information: http://předmět je vyučován pouze v zimním semestru
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Dubcová Miroslava RNDr. Ph.D.
Červená Lenka RNDr. Ph.D.
Class: Předměty pro matematiku
Classification: Mathematics > Mathematics General
Interchangeability : B413004, N413005
Is interchangeable with: B413004
This subject contains the following additional online materials
Annotation -
The course deals with methods for approximation of functions, derivatives and integrals, with methods for solving linear and nonlinear algebraic equations, with methods for solving ordinary/partial differential equations with initial/boundary conditions, and with methods for experimental data evaluation. By learning these numerical methods students will gain insight into problem formulation and develop the ability to derive a problem solution and estimate its accuracy.
Last update: Kubová Petra (22.01.2018)
Course completion requirements -

individual project - assesment, written exam, oral exam

Last update: Dubcová Miroslava (16.02.2018)
Teaching methods -

Lectures and exercise classes.

Last update: Kubová Petra (22.01.2018)
Syllabus -

1. Interpolation.

2. Interpolation by spline functions.

3. Difference formulas, quadrature formulas.

4. Methods of linear algebra.

5. Systems of nonlinear equations. Newton method.

6. Initial value problem for ODEs. One-step methods.

7. Stiff systems. Multistep methods. Stability. Error estimation.

8. Boundary value problem for ODEs. Finite-difference methods.

9. Boundary value problem for ODEs. Shooting methods.

10. Finite-difference methods for linear parabolic PDEs.

11. Finite-difference methods for nonlinear parabolic PDEs.

12. Methods of lines.

13. Finite-difference methods for elliptic PDEs.

14. Linear regression.

Last update: Červená Lenka (29.08.2024)
Learning outcomes -

Students will be able to formulate mathematical models using algebraic or differential equations. They will gain an overview of the commonly used numerical methods and they will learn how to determine the accuracy of numerical solutions.

Last update: Kubová Petra (22.01.2018)
Entry requirements -

Students are expected to have either completed the prerequisite course Mathematics B or possess the equivalent knowledge prior to enrolling in the course.

Last update: Borská Lucie (13.05.2019)
Registration requirements -

Mathematics A

Last update: Borská Lucie (06.05.2019)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1 28
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 1 28
4 / 5 112 / 140
 
VŠCHT Praha