SubjectsSubjects(version: 965)
Course, academic year 2022/2023
  
Digital Signal and Image Processing - AM445002
Title: Digital Signal and Image Processing
Guaranteed by: Department of Mathematics, Informatics and Cybernetics (446)
Faculty: Faculty of Chemical Engineering
Actual: from 2021
Semester: winter
Points: winter s.:5
E-Credits: winter s.:5
Examination process: winter s.:
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited / unlimited (unknown)
Min. number of students: unlimited
State of the course: taught
Language: English
Teaching methods: full-time
Level:  
Additional information: http://uprt.vscht.cz/prochazka/pedag/ATHENSe.htm
Guarantor: Švihlík Jan doc. Ing. Ph.D.
Procházka Aleš prof. Ing. CSc.
Interchangeability : M445002
Is interchangeable with: M445002
Annotation
The subject includes general methods of analysis and processing of sequences of observed signals and images (http://uprt.vscht.cz/prochazka/pedag/ATHENSe.htm). Fundamental mathematical methods include discrete Fourier transform for analysis of multidimensional signals, z-transform for system description, selected statistical and numerical methods including the use of difference equations for the time-domain system description and design of digital filters. Algoritmic methods are implemented in the MATLAB and Simulink environment using both numerical methods and symbolic mathematics. Projects include the application of selected methods for biomedical signal and image analysis, environmental signal processing and energy data prediction.
Last update: Kubová Petra (22.01.2018)
Course completion requirements

In the frame of computational laboratories it is necessary to evaluate 3 projects including mathematical analysis of methods used and their verification in the MATLAB/Simulink environment. During exam the knowledge of mathematical metods of signal and image analysis and processing is verified together with their algorithmic implementation (http://uprt.vscht.cz/prochazka/pedag/ATHENSe.htm).

Last update: Procházka Aleš (14.02.2018)
Literature

[1] T. Bose: Digital Signal and Image Processing, Wiley, 2004

[2] Vaseghi S.V.: Multimedia Signal Processing, Wiley, 2007.

[3] http://uprt.vscht.cz/prochazka/pedag/DSPc.htm

Last update: Kubová Petra (22.01.2018)
Requirements to the exam

In the frame of computational laboratories it is necessary to evaluate 3 projects including mathematical analysis of methods used and their verification in the MATLAB/Simulink environment. During exam the knowledge of mathematical metods of signal and image analysis and processing is verified together with their algorithmic implementation (http://uprt.vscht.cz/prochazka/pedag/ATHENSe.htm).

Last update: Procházka Aleš (14.02.2018)
Syllabus

1. Algorithmic tools of digital signal processing, fundamentals of MATLAB environment

2. Numerical, symbolic and visualization tools of MATLAB, data files processing

3. Time-domain signal representation, difference equations, selected statistical methods

4. Frequency-domain signal analysis, sampling, discrete Fourier transform, decomposition

5. Spectrum estimation, aliasing, short-time Fourier transform, window functions

6. Z-transform and system description, discrete transfer function, frequency transfer function

7. Digital filters, basic methods in the time domain, convolution, FIR filters, filter banks

8. IIR filters, basic properties, signal decimation

9. Filtering methods in frequency domain, signal reconstruction, window functions

10. Linear methods of time series modelling and prediction, SVD a QR algorthm, model selection

11. Nonlinear methods of signal processing, median filters, principles of neural networks

12. Basic methods of image analysis, 2D Fourier transform, image processing

13. Signal processing in engineering, signal prediction, Simulink environment, basic blocks

14. Biomedical signal and image processing

Last update: Kubová Petra (22.01.2018)
Learning resources

http://uprt.vscht.cz/prochazka/pedag/lectures/ATHENS_DSP.pdf

http://uprt.vscht.cz/prochazka/pedag/lectures/SP0_MATLAB_2006EN.pdf

Last update: Procházka Aleš (14.02.2018)
Learning outcomes

Students will know how

(i) to analyze time series and images by discrete Fourier and wavelet transforms,

(ii) to use z-transform for discrete systems description,

(iii) to apply digital filters in time and frequency domains,

(iv) to use digital signal processing methods for real data analysis

Last update: Procházka Aleš (14.02.2018)
Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0.5 14
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0.5 14
Práce na individuálním projektu 1 28
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 1 28
5 / 5 140 / 140
 
VŠCHT Praha