|
|
|
||
During the lectures and exercises, students will get acquainted with the basic statistical concepts and methods used to process data sets of biological and food science disciplines. They will be able to practice statistical methods on real examples so that they will then be able to use them in practice. For this reason, the free available mathematico-statistical software Rstudio and MetaboAnalyst are used for teaching. Both of these free available software are suitable both for basic statistical tasks and for subsequent more complex tasks such as multidimensional statistical methods. Basic statistical methods are also practiced in MS Excel. Emphasis is placed on the practical use of statistical methods and the correct interpretation of the results obtained.
Last update: Drábová Lucie (16.11.2021)
|
|
||
Individual statistical project Last update: Fialová Jana (18.12.2017)
|
|
||
R: Eckschlager K., Horsák I., Kodejš Z.: Vyhodnocování analytických výsledků a metod, SNTL Praha, 1980, ISBN 04-610-80 Electronic resources: R: Z: M. Meloun, J. Militký : Statistické zpracování experimentálních dat - v chemometrii, biometrii, ekonometrii a v dalších oborech přírodních, technických a společenských věd, https://meloun.upce.cz/docs/books/ucebnice-sken.pdf R: Elektronická nápověda k programu MS Excel podle aktuální verze R: http://www.statistica.cz/ A: http://mms01.vscht.cz/vyuka/ Last update: Drábová Lucie (16.11.2021)
|
|
||
Within the extent of the syllabus. Last update: Vlčková Martina (30.01.2018)
|
|
||
1. History introduction, histogram, random value. 2. Frequency - absolute, relative, cumulative and relative cumulative, probability, random selection, variartion, permutation, combination. 3. Frequency and distributin function. 4. Absolute and relative error, statistical estimations, mean value, variance, curtoisis, skewnes. 5. Statistical tests - parametric. 6. Statistical tests - nonparametric. 7. Regression - linear. 8. Regression - nonlinear, polynomic, linearization. 9. Correlation, coefficient and matrix. 10. Analysis of variance. 11. Introduction to the multivariate methods. 12. Basic principles of the neural networks. 13. Using fuzzy sets. 14. New trends in data processing. Last update: Pulkrabová Jana (30.01.2018)
|
|
||
http://mms01.vscht.cz/vyuka/ Last update: Fialová Jana (18.12.2017)
|
|
||
Student will be able to:
Last update: Drábová Lucie (16.11.2021)
|
|
||
Mathematics I Last update: Pulkrabová Jana (30.01.2018)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Účast na přednáškách | 0.5 | 14 | ||
Práce na individuálním projektu | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 0.5 | 14 | ||
Účast na seminářích | 1 | 28 | ||
3 / 3 | 84 / 84 |