PředmětyPředměty(verze: 963)
Předmět, akademický rok 2021/2022
  
Základy matematiky - B413008
Anglický název: Elementary Mathematics
Zajišťuje: Ústav matematiky, informatiky a kybernetiky (446)
Fakulta: Fakulta chemicko-inženýrská
Platnost: od 2021
Semestr: letní
Body: letní s.:5
E-Kredity: letní s.:5
Způsob provedení zkoušky: letní s.:
Rozsah, examinace: letní s.:2/2, Z+Zk [HT]
Počet míst: neomezen / neomezen (neurčen)
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Způsob výuky: prezenční
Úroveň:  
Poznámka: předmět je možno zapsat mimo plán
povolen pro zápis po webu
Garant: Pavlíková Pavla RNDr. Ph.D.
Klasifikace: Matematika > Matematika
Záměnnost : N413019, Z413019
Termíny zkoušek   Rozvrh   
Anotace -
Předmět je určen pro studenty 1. ročníku restaurátorských studijních oborů. Cílem je prohloubit základní znalosti z matematiky, se zaměřením na funkce, limity, derivace funkce jedné proměnné, pojem primitivní funkce a určitý integrál. Studenti se seznámí i s aplikacemi těchto pojmů ve fyzice a chemii.
Poslední úprava: Pavlíková Pavla (09.03.2018)
Výstupy studia předmětu -

Studenti budou umět: orientovat se v základních matematických pojmech, řešit jednoduché rovnice a nerovnice, zvládat základní výpočty limit, derivací, primitivních funkcí a určitých integrálů.

Poslední úprava: Kubová Petra (15.01.2018)
Podmínky zakončení předmětu (Další požadavky na studenta)

Předmět je zakončen písemnou zkouškou (zkouškový test). Zápočet student získá na základě výsledků průběžných testů.

Poslední úprava: Kubová Petra (08.03.2018)
Literatura -

Z: Pavlíková P., Schmidt O.: Základy matematiky. Skripta VŠCHT Praha. ISBN 80-7080-615-X

D: Heřmánek L. a kol.: Sbírka příkladů k Matematice I ve strukturovaném studiu. Skripta VŠCHT Praha. ISBN 80-7080-688-3

D: Porubský Š.: Fundamental Mathematics for Engineers, Vol. I. Skripta VŠCHT Praha. ISBN 80-7080-418-1

Poslední úprava: Kubová Petra (15.01.2018)
Metody výuky -

Přednášky a cvičení.

Poslední úprava: Kubová Petra (15.01.2018)
Požadavky ke zkoušce (Forma způsobu ověření studijních výsledků)

Předmět je zakončen písemnou zkouškou (zkouškový test). Zápočet student získá na základě výsledků průběžných testů.

Poslední úprava: Pavlíková Pavla (30.09.2020)
Sylabus -

1. Číselné obory. Práce se zlomky, procento. Mocniny a odmocniny. Mnohočleny, hledání kořenů mnohočlenů. Absolutní hodnota reálného čísla, její geometrický význam. Úpravy algebraických výrazů.

2. Pojem funkce jedné reálné proměnné, její definiční obor, obor hodnot, graf funkce. Základní vlastnosti funkcí. Elementární funkce, jejich vlastnosti a grafy.

3. Pravoúhlý trojúhelník - Pythagorova věta, Euklidovy věty a jejich aplikace. Goniometrické funkce orientovaného úhlu.

4. Rovnice a nerovnice - ekvivalentní a neekvivalentní úpravy, význam zkoušky. Rovnice a nerovnice lineární, kvadratická (bez komplexních kořenů) - řešení početně/graficky. Rovnice a nerovnice s absolutní hodnotou. Trojčlenka.

5. Jednoduché rovnice exponenciální a logaritmické. Rovnice a jednoduché nerovnice goniometrické. Nerovnice podílového a součinového typu.

6. Aritmetické a geometrické posloupnosti, součet geometrické řady. Vzájemné převody mezi zlomky a desetinnými rozvoji. Základy finanční matematiky - úročení jednoduché a složené.

7. Analytická geometrie v rovině a prostoru: souřadnice bodu, vektor, souřadnice vektoru. Analytické vyjádření přímky v rovině, roviny v prostoru. Parametrická, obecná a směrnicová rovnice přímky. Vzájemná poloha dvou přímek, přímky a roviny.

8. Limita a spojitost funkce - intuitivní způsob definice, pomocí obrázků. Výpočty jednoduchých limit.

9. Derivace funkce a její praktický význam. Derivace elementárních funkcí.

10. Derivace součtu, součinu, podílu. Aplikace: tečna ke grafu funkce, rychlost pohybu, rychlost průběhu chemické reakce.

11. Průběh funkce (bez obecných asymptot).

12. Aplikace derivace: slovní úlohy na lokální extrémy funkce a průběh funkce.

13. Pojem primitivní funkce a určitého integrálu, jednoduché příklady. Aplikace: volný pád, plocha rovinného obrazce.

14. Lineární algebra: soustavy lineárních rovnic (bez parametru), geometrický význam.

Poslední úprava: Kubová Petra (15.01.2018)
Studijní opory -

E-sbírka řešených příkladů k Základům matematiky pro bakaláře:

http://www.vscht.cz/mat/ZMb/e-ZMproB.pdf

Poslední úprava: Kubová Petra (15.01.2018)
Studijní prerekvizity -

Žádné.

Poslední úprava: Kubová Petra (15.01.2018)
Zátěž studenta
Činnost Kredity Hodiny
Konzultace s vyučujícími 0.3 7
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0.7 20
Příprava na zkoušku a její absolvování 2 57
Účast na seminářích 1 28
5 / 5 140 / 140
 
VŠCHT Praha