PředmětyPředměty(verze: 901)
Předmět, akademický rok 2021/2022
  
Laboratorní a průmyslová data - M111006
Anglický název: Laboratory and industrial data
Zajišťuje: Ústav organické technologie (111)
Platnost: od 2020
Semestr: zimní
Body: zimní s.:4
E-Kredity: zimní s.:4
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:1/2 Z+Zk [hodiny/týden]
Počet míst: neomezen / neomezen (neurčen)
Minimální obsazenost: neomezen
Jazyk výuky: čeština
Způsob výuky: prezenční
Úroveň:  
Pro druh: navazující magisterské
Poznámka: předmět je možno zapsat mimo plán
povolen pro zápis po webu
Garant: Paterová Iva Ing. Ph.D.
Záměnnost : N111018
Pro tento předmět jsou dostupné online materiály
Anotace -
Poslední úprava: Kubová Petra Ing. (04.01.2018)
Předmět je zaměřen na neformální, důsledné zpracování a spolehlivé vyhodnocování dat z laboratorních a průmyslových měření. Důraz je kladen především na získání zkušeností z řešení rozsáhlého a pestrého souboru praktických příkladů především z chemické technologie. Cílem předmětu je také osvojení základních principů plánování experimentů.
Výstupy studia předmětu -
Poslední úprava: Kubová Petra Ing. (04.01.2018)

Studenti budou umět:

Zpracovat data z laboratorních experimentů a průmyslových měření

Komplexně a spolehlivě interpretovat výsledky statistického zpracování dat

Navrhovat optimální plány pokusů

Ovládat vybraný software pro statistické zpracování dat

Literatura -
Poslední úprava: Kubová Petra Ing. (04.01.2018)

Z: Meloun M., Militký J.: Statistické zpracování experimentálních dat. East publishing, Praha 1998, 8071940755.

Z: Pavlík J. a kol.: Aplikovaná statistika. Skriptum VŠCHT Praha, Praha 2005. 8070805692.

D: Jaroš F., Pavlík J., Turzík D., Veselý P.: Pravděpodobnost a statistika. Skriptum VŠCHT Praha, Praha 199, 8070804742.

D: Pexidr V., Kondelík P.: Optimalizace - identifikace matematického modelu. Skriptum VŠCHT Praha. Praha 1986.

D: Joglekar A. M.: Industrial statistics. Wiley, Hoboken 2010. 9780470497166

Studijní opory -
Poslední úprava: Kubová Petra Ing. (04.01.2018)

http://www.vscht.cz/kot/cz/studijni-materialy.html

Požadavky ke kontrole studia
Poslední úprava: Kubová Petra Ing. (04.01.2018)

1. Podmínkou udělení zápočtu je zvládnutí základních počítačových programů pro zpracování a vyhodnocování dat, prověřené na základě dvou testů během semestru.

2. Zkouška je založena na samostatném zpracování vybraného souboru praktických příkladů s možností využití libovolných pomůcek.

Sylabus -
Poslední úprava: Kubová Petra Ing. (04.01.2018)

1. Principy analýzy dat, vlastnosti měřených dat, experimenty a monitoring.

2. Statistická analýza dat, typové úlohy, aplikační software.

3. Přímé získávání informací z měřených dat, analýza výběrových charkteristik.

4. Analýza časových řad, třídění dat, plánování experimentů.

5. Matematické modely, mechanistické, semiempirické a empirické modely.

6. Metody optimálních odhadů parametrů modelů, software pro regresní analýzu.

7. Modely s diferenciálními rovnicemi, derivace závisle proměnných, integrace diferenciáních rovnic.

8. Hodnocení spolehlivosti regresních parametrů, konfidenční oblasti, korelace parametrů.

9. Hodnocení spolehlivosti simulovaných dat, analýza rozptylu a reziduálních odchylek.

10. Úpravy dat pro regresní analýzu, eliminace odlehlých měření, transformace proměnných.

11. Úpravy modelů pro regresní analýzu, transformace modelů, eliminace silné korelace parametrů.

12. Plánování experimentů, optimální počet odezev a rozsahu experimentálních podmínek.

13. Sekvenční plánování experimentů, diskriminační a zpřesňující.

14. Faktorové a empirické plány experimentů, plné a neuplné plány.

Studijní prerekvizity -
Poslední úprava: Kubová Petra Ing. (04.01.2018)

Matematika I, Aplikovaná statistika

 
VŠCHT Praha