Matematika pro chemické inženýry - N413032
Anglický název: Mathematics for chemical engineers
Zajišťuje: Ústav matematiky (413)
Fakulta: Fakulta chemicko-inženýrská
Platnost: od 2021
Semestr: zimní
Body: zimní s.:5
E-Kredity: zimní s.:5
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:2/2, Z+Zk [HT]
Počet míst: neurčen / neurčen (neurčen)
Minimální obsazenost: neomezen
Jazyk výuky: čeština
Způsob výuky: prezenční
Způsob výuky: prezenční
Úroveň:  
Je zajišťováno předmětem: M413007
Pro druh:  
Garant: Janovská Drahoslava prof. RNDr. CSc.
Třída: Předměty pro matematiku
Je záměnnost pro: M413007, AM413007
Termíny zkoušek   Rozvrh   
Anotace -
Poslední úprava: TAJ413 (17.01.2012)
Předmět navazuje na znalosti studentů získané v bakalářském studiu. Jeho hlavní náplní je studium diferenciálních rovnic a jejich soustav, dynamických systémů (kvalitativní teorie), dále stručný úvod do vektorové analýzy a teorie parciálních diferenciálních rovnic. Nedílnou součástí předmětu je procvičení teoretických matematických vědomostí na konkrétních příkladech z chemického inženýrství s využitím moderního softwaru.
Výstupy studia předmětu -
Poslední úprava: TAJ413 (17.01.2012)

Cílem předmětu je umožnit studentům zopakovat si a prohloubit znalosti získané v matematických kursech bakalářského studia. I když budou studenti v budoucnu pracovat v nejrůznějších oblastech chemie, měli by být schopni využít při formulaci, analýze a simulaci svých výsledků rigorózní matematické nástroje včetně nejmodernějšího dostupného softwaru.

Literatura -
Poslední úprava: TAJ413 (11.07.2013)

Z: Turzík Daniel a kol.: Matematika II ve strukturovaném studiu, VŠCHT Praha, 2005.

D: Pavlík Jiří a kol.: Aplikovaná statistika, VŠCHT Praha, 2005.

Z: Kubíček Milan, Dubcová Miroslava, Janovská Drahoslava: Numerické metody a algoritmy, VŠCHT Praha, 2005 (druhé vydání).

Z: A. Klíč, M. Dubcová ,L. Buřič: Soustavy obyčejných diferenciálních rovnic, kvalitativní teorie, dynamické systémy, VŠCHT Praha, 2009, ISBN: 978-80-7080-724-8

Z: Klíč Alois, Dubcová Miroslava, Buřič Lubor: Soustavy obyčejných diferenciálních rovnic, kvalitativní teorie, dynamické systémy, VŠCHT Praha, 2009.

D: Klíč Alois, Dubcová Miroslava: Základy tenzorového počtu s aplikacemi, VŠCHT Praha, 1998.

D: R.A. Horn, C.R. Johnson: Matrix Analzsis. Cambridge Universitz Press, 1999. ISBN 0-521-38632-2

Studijní opory -
Poslední úprava: Janovská Drahoslava prof. RNDr. CSc. (30.08.2013)

http://www.vscht.cz/mat/MCHI/PoznamkyMCHI.html

http://www.vscht.cz/mat/Ang/NM-Ang/e_nm_semin.html

Metody výuky -
Poslední úprava: TAJ413 (17.01.2012)

Přednášky probíhají dle sylabu. Ne ně navazuje cvičení, kde jsou teoretické matematické znalosti aplikovány na konkrétní úlohy chemického inženýrství. K výpočtům je využíván Matlab, pro simulace chování dynamických systémů konkrétně "pplane".

Požadavky ke zkoušce (Forma způsobu ověření studijních výsledků) -
Poslední úprava: TAJ413 (17.01.2012)

Během semestru vypracují studenti několik miniprojektů (jejich počet závisí na obtížnosti úlohy). Cvičící posoudí kvalitu zpracování a udělí studentovi zápočet. Bez zápočtu nemůže student konat zkoušku. Zkouška se skládá z písemné a ústní části. Podmínkou pro připuštění k ústní zkoušce je zisk minimálně 50ti bodů z písemky. Napíše-li student písemku na dostatečný počet bodů a neuspěje u ústní části, nemusí písemku opakovat.

Sylabus -
Poslední úprava: Kubová Petra Ing. (12.09.2018)

1. Základy vektorového a tenzorového počtu. Algebra operátoru nabla. Křivky. Křivkový integrál.

2. Plochy. Tečná rovina k ploše, normála plochy, metrický tenzor plochy. Plošný integrál vektorového pole, Gaussova a Stokesova věta. Greenova a Gaussova–Ostrogradského věta.

3. Základy maticového počtu – opakování. Vlastní čísla a vlastni vektory matice, zobecněné vlastní vektory. Řešení soustav lineárních algebraických rovnic. Inverzní matice.

4. Singulární hodnoty matice, singulární rozklad matice, řešeni soustavy lineárních rovnic ve smyslu nejmenších čtverců, normální rovnice. Lineární regrese, polynomiální regrese, obecný model lineární regrese.

5. Numerické řešení soustav nelineárních rovnic: Newtonova metoda, Newtonova metoda pro soustavy nelineárních rovnic. Nelineární regrese.

6. Implicitní funkce jedné i více proměnných.

7. Numerické řešení obyčejných diferenciálních rovnic – počáteční úloha: Eulerova metoda, Rungova-Kuttova metoda 2. a 4. řádu.

8. Numerické řešení obyčejných diferenciálních rovnic – okrajová úloha: metoda střelby. Diferenční náhrady.

9. Soustavy lineárních DR s konstantními koeficienty. Řešení lineárních soustav pomocí vlastních čísel, vlastních a zobecněných vlastních vektorů.

10. Vektorové pole, trajektorie soustavy diferenciálních rovnic, rovnovážné stavy, fázové portréty lineárních soustav DR v R^1, R^2.

11. Soustavy nelineárních DR: Klasifikace rovnovážných stavů nelineárních soustav. Konstrukce fázových portrétů v rovině. Věta Grobmanova–Hartmanova, uzavřené trajektorie.

12. Lineární PDR 1. řádu. Klasifikace lineárních PDR dvou nezávisle proměnných. Diferenční metody řešení PDR.

13. Řady. Fourierovy řady.

14. Rovnice vedení tepla v 1D na konečné oblasti. Laplaceova a Poissonova rovnice , Fourierova metoda jejich řešení.

Studijní prerekvizity -
Poslední úprava: TAJ413 (11.07.2013)

Předpokládá se úspěšné absolvování předmětů Matematika I a II nebo Matematika A a B. Výhodou je absolvování kursu z Numerických metod a Matematiky III.

Zátěž studenta
Činnost Kredity Hodiny
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1 28
Práce na individuálním projektu 1 28
Příprava na zkoušku a její absolvování 1.5 42
Účast na seminářích 0.5 14
5 / 5 140 / 140
Hodnocení studenta
Forma Váha
Aktivní účast na výuce 20
Zkouškový test 20
Průběžné a zápočtové testy 20
Ústní zkouška 40