PředmětyPředměty(verze: 853)
Předmět, akademický rok 2019/2020
  
Mechanics of Materials - AM107001
Anglický název: Mechanics of Materials
Zajišťuje: Ústav skla a keramiky (107)
Platnost: od 2019
Semestr: zimní
Body: zimní s.:5
E-Kredity: zimní s.:5
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:3/0 Zk [hodiny/týden]
Počet míst: neomezen / neurčen (neurčen)
Minimální obsazenost: neomezen
Jazyk výuky: angličtina
Způsob výuky: prezenční
Úroveň:  
Pro druh: navazující magisterské
Poznámka: předmět je možno zapsat mimo plán
povolen pro zápis po webu
Garant: Pabst Willi prof. Dr. Dipl. Min.
Pro tento předmět jsou dostupné online materiály
Anotace - angličtina
Poslední úprava: Kubová Petra Ing. (14.01.2018)
This course provides a self-contained and consistent overview of the mechanical and thermomechanical properties of materials, based on the theory of rational mechanics and thermomechanics. The presentation of the topics is based on the exact theory of continua and requires from the student the ability to follow tensor formalism. Apart from standard topics this course contains recent developments in the field of materials mechanics, and tries to correct some of the errors and misconceptions in the common textbook literature. The course is appropriate for students of all subjects.
Výstupy studia předmětu - angličtina
Poslední úprava: Kubová Petra Ing. (14.01.2018)

Students will be able to:

use the most important concepts related to stress and strain tensors, correctly choose and and evaluate mechanical tests, correctly interpret their results, use the correct terminology for the presentation of results and grasp the underlying theoretical principles of materials mechanics to the degree and depth necessary for a full understanding of the modern specialized literature in the field.

Literatura - angličtina
Poslední úprava: Kubová Petra Ing. (14.01.2018)

R - Haupt P.: Continuum Mechanics and Theory of Materials. Springer, Berlin 2000. (ISBN 3-540-66114-X).

R - Billington E. W., Tate A.: The Physics of Deformation and Flow. McGraw Hill, New York 1981. (ISBN 0-07-005285-9).

R - Green D.J.: An Introduction to the Mechanical Properties of Ceramics. Cambridge University Press , Cambridge 1998. (ISBN 0-521-59913-X).

R - Menčík J.: Pevnost a lom skla a keramiky. SNTL, Praha 1990. (ISBN 80-03-00205-2).

R - Pabst W., Gregorová E.: Effective elastic moduli of alumina, zirconia and alumina-zirconia composite ceramics, pp. 31-100 in Caruta B.M. (ed.): Ceramics and Composite Materials � New Research. Nova Science, New York 2006. (ISBN 1-59454-370-4).

A - Torquato S.: Random Heterogeneous Materials - Microstructure and Macrosopic Properties. Springer, New York 2002.

A - Menčík J.: Strength and Fracture of Glass and Ceramics. Elsevier, Amsterdam 1992. (ISBN 0-444-98685-5).

A - Pabst W., Gregorová E.: Effective thermal and thermoelastic properties of alumina, zirconia and alumina-zirconia composite ceramics, pp. 77-138 in Caruta B.M. (ed.): New Developments in Materials Science Research. Nova Science, New York 2007. (ISBN 1-59454-854-4).

Studijní opory - angličtina
Poslední úprava: Kubová Petra Ing. (14.01.2018)

Lecture notes on CD (available from the lecturer).

Sylabus -
Poslední úprava: Kubová Petra Ing. (14.01.2018)

1. Introduction: balance equations of mechanics and thermomechanics, tensors, principal values, invariants, Cayley-Hamilton theorem

2. Constitutive theory: constitutive principles, deformation function, deformation gradient, deformation and strain tensors, stress tensors

3. Linear elasticity of anisotropic solids, nonlinear elasticity of isotropic solids, viscosity of non-Newtonian fluids

4. Linear elasticity of isotropic solids (uniaxial tension, simple shear, isotropic deformation), definition of elastic constants, auxetic materials

5. Linear thermoelasticity of solids and fluids (stress, heat flux, energy, entropy), isothermal and adiabatic elastic constants

6. Equations of state, principles of atomistic modeling of elastic and thermoelastic properties; property values for metals, ceramics, glasses and polymers

7. Effective elastic, thermoelastic and thermophysical properties of dense polycrystalline materials; measurement of elastic, thermoelastic and thermophysical properties

8. Temperature dependence of elastic, thermoelastic and thermophysical properties; high-temperature behavior of materials

9. Basic fracture mechanics: plane elasticity, stress intensity factor, fracture criteria, plastic zone, fatigue, lifetime; elastoplastic behavior

10. Testing of mechanical properties: strength, Weibull statistics, hardness, fracture toughness; temperature and grain size dependence of properties

11. Rheology: Viscous, viscoplastic and viscoelastic material behavior, damping

12. Effective properties of heterogeneous materials I: Rigorous micromechanical bounds

13. Effective properties of heterogeneous materials II: Model relations for composites

14. Effective properties of heterogeneous materials III: Model relations for porous materials

Vstupní požadavky - angličtina
Poslední úprava: Pabst Willi prof. Dr. Dipl. Min. (14.02.2018)

In order to enroll for this course the student must have a bachelor (B.Sc.) or comparable degree in chemistry, materials science and technology or a related field.

Podmínky zakončení předmětu - angličtina
Poslední úprava: Pabst Willi prof. Dr. Dipl. Min. (14.02.2018)

In order to become eligible for classification the student has to pass a written qualification test. The final exam is oral and concerns the content of the whole lecture course.

Zátěž studenta
Činnost Kredity Hodiny
Účast na přednáškách 1,5 42
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1,5 42
Příprava na zkoušku a její absolvování 2 56
5 / 5 140 / 140
Hodnocení studenta
Forma Váha
Aktivní účast na výuce 30
Zkouškový test 30
Ústní zkouška 40

 
VŠCHT Praha