PředmětyPředměty(verze: 908)
Předmět, akademický rok 2022/2023
  
Neural Networks - AM445004
Anglický název: Neural Networks
Zajišťuje: Ústav počítačové a řídicí techniky (445)
Platnost: od 2022
Semestr: letní
Body: letní s.:5
E-Kredity: letní s.:5
Způsob provedení zkoušky: letní s.:
Rozsah, examinace: letní s.:2/2, Z+Zk [HT]
Počet míst: neurčen / neurčen (neurčen)
Minimální obsazenost: neomezen
Jazyk výuky: angličtina
Způsob výuky: prezenční
Úroveň:  
Pro druh: navazující magisterské
Další informace: https://moodle.vscht.cz/enrol/index.php?id=55
Garant: Cejnar Pavel RNDr. Mgr. Ph.D.
Neslučitelnost : M445004
Záměnnost : M445004
Je neslučitelnost pro: M445004
Je záměnnost pro: M445004
Anotace - angličtina
Poslední úprava: Cejnar Pavel RNDr. Mgr. Ph.D. (14.06.2022)
The course is focused on comprehension of commonly used neural network architectures, suitable for various types of solved problems and processed data. Lectures cover the necessary theory, but are mainly focused on practical aspects of neural network design. For seminars, students will try to train the designed models of neural networks and further optimize them.
Výstupy studia předmětu - angličtina
Poslední úprava: Cejnar Pavel RNDr. Mgr. Ph.D. (14.06.2022)

Students will be able to:

(i) select the appropriate neural network architecture for the selected data type

(ii) design the neural network model and select the appropriate optimization algorithm for training

Literatura - angličtina
Poslední úprava: Cejnar Pavel RNDr. Mgr. Ph.D. (14.06.2022)

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org

Studijní opory - angličtina
Poslední úprava: Cejnar Pavel RNDr. Mgr. Ph.D. (14.06.2022)

https://moodle.vscht.cz/enrol/index.php?id=55

Sylabus - angličtina
Poslední úprava: Cejnar Pavel RNDr. Mgr. Ph.D. (14.06.2022)

Feed-forward neural networks

  • basic architectures and activation functions
  • optimization algorithms for training
  • selection of hyperparameters

Regularization of neural network models

  • commonly used regularization techniques - dropout, label-smoothing

Convolutional neural networks

  • convolution layers, normalization
  • architectures suitable for deep convolutional neural networks
  • pre-training and fine-tuning of deep neural networks

Recurrent neural networks

  • basic recurrent networks and problems of their training
  • LSTM, GRU
  • bidirectional and deep recurrent networks

Transformer architecture

Design and optimization of neural networks in various environments - Python, MATLAB

Vstupní požadavky - angličtina
Poslední úprava: Cejnar Pavel RNDr. Mgr. Ph.D. (14.06.2022)

basic programming skills in Python, MATLAB (at least one of them) are advisable

Podmínky zakončení předmětu - angličtina
Poslední úprava: Cejnar Pavel RNDr. Mgr. Ph.D. (14.06.2022)

The student passes the practicals by submission of sufficient number of assignments (obtaining the appropriate number of points, including bonus points). The assignments are announced regularly during the whole semester. The student can choose which of the assignments to work on in order to obtain the necessary number of points. The written exam test consists of randomly selected questions from a set of previously announced exam questions. Classification in the exam can be improved or replaced by submission of an extended number of assignments (obtaining the extended number of points).

Zátěž studenta
Činnost Kredity Hodiny
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1 28
Práce na individuálním projektu 1 28
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 1 28
5 / 5 140 / 140
 
VŠCHT Praha