PředmětyPředměty(verze: 853)
Předmět, akademický rok 2019/2020
  
Metody aplikované matematiky - M413003
Anglický název: Methods of Applied Mathematics
Zajišťuje: Ústav matematiky (413)
Platnost: od 2019
Semestr: letní
Body: letní s.:4
E-Kredity: letní s.:4
Způsob provedení zkoušky: letní s.:
Rozsah, examinace: letní s.:2/1 Z+Zk [hodiny/týden]
Počet míst: neurčen / neurčen (neurčen)
Minimální obsazenost: neomezen
Jazyk výuky: čeština
Způsob výuky: prezenční
Úroveň:  
Pro druh:  
Poznámka: předmět je možno zapsat mimo plán
povolen pro zápis po webu
Garant: Janovská Drahoslava prof. RNDr. CSc.
Třída: Předměty pro matematiku
Záměnnost : N413013
Termíny zkoušek   Rozvrh   
Anotace -
Poslední úprava: Pátková Vlasta (09.01.2018)
Cílem výuky je doplnit znalosti studentů zejména v oblasti funkcionální analýzy tak, aby porozuměli matematickým základům metody konečných prvků. Metoda konečných prvků je moderní numerická metoda, která umožňuje spojitě aproximovat řešení parciálních diferenciálních rovnic. Studenti se seznámí s jejími základními principy a pro jednoduché úlohy si metodu vyzkouší s použitím moderního softwaru.
Výstupy studia předmětu -
Poslední úprava: Pátková Vlasta (09.01.2018)

Studenti se seznámí s matematickými principy metod, které spojitě aproximují řešení parciálních diferenciálních rovnic. Konkrétně jde o metodu vážených residuí a zejména o metodu konečných prvků.

Literatura -
Poslední úprava: Pátková Vlasta (09.01.2018)

Z: Kubíček Milan, Dubcová Miroslava, Janovská Drahoslava: Numerické metody a algoritmy, VŠCHT Praha, 2005 (druhé vydání).

D: Suli Endre: Lecture notes of Finite Element Method for Partial Differential Equations, http://people.maths.ox.ac.uk/suli/fem.pdf

Studijní opory -
Poslední úprava: Pátková Vlasta (09.01.2018)

Z: http://www.vscht.cz/mat/MAM/FEM_UM.pdf

D: http://www.vscht.cz/mat/Ang/NM-Ang/e_nm_semin.html

D: Suli Endre: Lecture notes of Finite Element Method for Partial Differential Equations, http://people.maths.ox.ac.uk/suli/fem.pdf

Metody výuky -
Poslední úprava: Pátková Vlasta (09.01.2018)

Přednášky, semináře, 3 samostatné miniprojekty a jejich presentace na seminářích.

Sylabus -
Poslední úprava: Pátková Vlasta (09.01.2018)

1. Metoda vážených reziduí.

2. Metoda konečných prvků - úvod.

3. Nezbytné minimum funkcionální analýzy.

4. Sobolevovy prostory.

5. Variační formulace okrajových úloh.

6. Jednoduchá jednodimenzionální okrajová úloha.

7. Formulace na elementech.

8. Globální matice tuhosti.

9. Vybrané metody numerické lineární algebry.

10. Variační formulace dvou a tří-dimenzionálních okrajových úloh.

11. Numerická realizace.

12. Různé typy elementů.

13. MKP pro třídimenzionální úlohy.

14. Numerické metody řešení soustav lineárních algebraických rovnic

Vstupní požadavky -
Poslední úprava: Borská Lucie RNDr. Ph.D. (13.05.2019)

Základní kurz matematiky v rozsahu předmětů Matematika A a Matematika B vyučovaných na VŠCHT.

Studijní prerekvizity -
Poslední úprava: Borská Lucie RNDr. Ph.D. (06.05.2019)

Žádné

Zátěž studenta
Činnost Kredity Hodiny
Účast na přednáškách 1 28
Práce na individuálním projektu 1 28
Příprava na zkoušku a její absolvování 1,5 42
Účast na seminářích 0,5 14
4 / 4 112 / 112
Hodnocení studenta
Forma Váha
Aktivní účast na výuce 20
Protokoly z individuálních projektů 20
Zkouškový test 20
Ústní zkouška 40

 
VŠCHT Praha